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ABSTRACT
The weak distortions produced by gravitational lensing in the images of background galaxies provide

a unique method to measure directly the distribution of mass in the universe. However, because the
induced distortions are only of a few percent, this technique requires high-precision measurements of the
lensing shear and cautious corrections for systematic e†ects. Kaiser, Squires, & Broadhurst proposed a
method to calibrate the ellipticity-shear relation in the presence of point-spread function (PSF) aniso-
tropies and camera distortions. Here, we revisit the Kaiser, Squires, & Broadhurst method in the context
of the demanding search for weak lensing by large-scale structure. We show that both the PSF and the
camera distortions can be corrected for using source moments, as opposed to ellipticities. We clarify the
applicability of some of the approximations made in this method. We derive expressions for the correc-
tions that involve only the galaxy moments. By decomposing the moments into spinors, we derive an
explicit relation between the shear and the average ellipticity. We discuss the shortcomings of the
method and test its validity using numerical simulations. As an application of the method, we repeat the
analysis of the Hubble Space Telescope (HST ) WFPC2 camera performed by Hoekstra et al. We conÐrm
the presence of sizable (D10%) PSF ellipticities at the edge of the WFPC2 chips. However, we Ðnd that
the camera distortion is radial, rather than tangential. We also show that the PSF ellipticity varies by as
much as 2% over time. We use these measurements to correct the shape of galaxies in the HST Survey
Strip (the ““ Groth ÏÏ Strip). By considering the dependence of the ellipticities on object size, we show that,
after corrections, the residual systematic uncertainty for galaxies with radii greater than is about0A.15
0.4% when averaged over each chip. We discuss how these results provide good prospects for measuring
weak lensing by large-scale structure with deep HST surveys.
Subject headings : cosmology : observations È gravitational lensing È techniques : image processing

1. INTRODUCTION

Weak gravitational lensing produces coherent distortions in the images of background galaxies. This e†ect provides a
unique method to measure directly the distribution of mass in the universe (for reviews, see Schneider, Ehlers, & Falco 1992 ;
Narayan & Bartelmann 1996 ; Mellier 1999). This technique is now routinely used to map the mass of clusters of galaxies (for a
review, see Fort & Mellier 1994). A search for weak lensing by large-scale structure is the subject of much recent and on-going
theoretical and observational e†ort (e.g., Villumsen 1995 ; Stebbins, McKay, & Frieman 1996 ; Kaiser 1996 ; Schneider et al.
1997 ; Van Waerbeke, Bernardeau, & Mellier 1999 ; Refregier et al. 1998 ; see Refregier 1999 for a bibliography). The main
difficulty lies in the fact that the lensing distortions are small (D10% for clusters and D1% for large-scale structure), thus
requiring high-precision measurements and tight control of systematic e†ects.

Kaiser, Squires, & Broadhurst (1995, hereafter KSB) have developed a method to correct for the major systematic e†ects,
namely, the anisotropy of the point-spread function (PSF) and camera distortions, and to calibrate the relation between
galaxy ellipticities and lensing shear (for other methods, see also Bonnet & Mellier 1995 ; Schneider & Seitz 1995). Further
elements of their method were presented in Luppino & Kaiser (1997, hereafter LK) and in Hoekstra et al. (1998, hereafter
HFKS).

Recently, Kaiser (1999) pointed out that the KSB method had several shortcomings, all stemming from the fact that most
PSFs encountered in practice are not sufficiently compact. Kaiser then proposed another method based on the explicit
construction of the postconvolution shear operator. Another alternative method was recently proposed by Kuijken (1999). In
this di†erent approach, a sheared and convolved isotropic model is Ðtted to the galaxy image, so as to derive an estimator for
the shear. These two methods are promising, but both require complete knowledge of the two-dimensional PSF function,
while PSF measurements are sparse because of the Ðnite number of stellar images.

Here, we revisit the KSB method, which has the advantage both of being linear and of relying only on the Ðrst multipole
moments of the PSF and galaxy images. We focus on the demanding search for weak lensing by large-scale structure. We
show that both the PSF and the camera distortions can be corrected for using source moments, as opposed to ellipticities. We
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clarify the applicability of some of the approximations made in this method and show how the weight function for stars can be
chosen to be di†erent from that for galaxies. We derive expressions for the corrections in term of the moments only. By
decomposing the moments into spinors, we derive an explicit relation between the shear and the average ellipticity. We
discuss the shortcomings of the method discussed in Kaiser (1999) and Kuijken (1999) and test its validity using numerical
simulations.

As an application, we consider weak lensing measurements with the Hubble Space Telescope (HST ). The small PSF and
absence of atmospheric seeing makes HST an ideal instrument for weak lensing measurements (e.g., Kneib et al. 1996 ;
HFKS). We reproduce the analysis of HFKS, who studied, in detail, the PSF and camera distortion of the WFPC2 camera on
board HST . We apply these calibrations to the galaxies in the HST Survey Strip known as the ““ Groth Strip ÏÏ (Groth et al.
1994 ; Rhodes 1999). In particular, we show how the PSF anisotropy and camera distortions depend on the size of the
galaxies. We also discuss the prospects of weak lensing measurements with HST . A description of our search for weak lensing
by large-scale structure with the Survey Strip will be presented in Rhodes, Refregier, & Groth (2000, in preparation ; see also
Rhodes 1999).

Because the method is somewhat complex, we provide a practical summary in ° 2, in which we point to the results and
equations that are of direct practical interest. In ° 3, we describe measures of object shapes. Next, in °° 4 and 5, we show how
these measures are a†ected by the two main classes of deformations, namely, convolutions and distortions, and derive explicit
expressions to correct for them. In ° 6, we study the e†ect of shear combined with a convolution on the observed ellipticity. In
° 7, we discuss the shortcomings of the method and test its validity using numerical simulations. In ° 8, we apply our method
to HST observations. In particular, we consider measurements of the camera distortion and globular cluster observations and
Ðnally apply our results to the Survey Strip. Our conclusions are summarized in ° 9.

2. OVERVIEW OF THE METHOD

The purpose of this method is to provide a measure of the shapes of galaxies, to correct for instrumental e†ects, and to
derive an estimate for the weak lensing shear. The images of galaxies are assumed to be altered by two kinds of operations :
distortions (sometimes simply called shear), which are intensity-conserving mappings between the source plane and the image
plane (see eq. [19]), and convolutions (or smear ; see eq. [36]). SpeciÐcally, we follow KSB and HFKS and assume that a
galaxy image is altered by a distortion due to gravitational lensing, followed by a convolution by a generally anisotropic PSF,
and then by a distortion due to the camera optics. Schematically, we can write

intrinsic image ] lensing(L) ] PSF(\) ] camera(L) ] observed image , (1)

where L and the asterisk symbolize distortions and convolutions, respectively. Here, we revisit the KSB method. We show
how to correct for the two latter e†ects and how to calibrate the sought-after e†ect of lensing.

The synopsis of our method is shown on Figure 1. Since the method is somewhat complex, we provide here a summary of
the method and point to the equations that are of direct practical interest. References to these equations can also be found in
this Ðgure.

The basis of the method is to characterize the shapes of galaxies and stars by measuring their multipole moments J
ij
, J

ijkl
,

etc. (eq. [5]). To enforce convergence in the presence of image noise, these moments are measured with a weight function w(h),
which we choose to be a Gaussian of width u (eq. [3]). This choice allows us to write all the expressions for the corrections in
terms of the moments. Unlike KSB, we perform all the corrections using moments and postpone the use of ellipticities (eq.
[12]) until the last step. This has the advantage of keeping track of the size of the PSF and of the galaxies, and thus of reducing
the noise resulting from the corrections, if the PSF size varies across the Ðeld.

The Ðrst step consists of deriving the distortion matrix (eq. [18]) for the camera distortion. HFKS showed that this/
ij
camera

could be achieved by considering astrometric shift solutions, such as that of Holtzmann et al. (1995) for the WFPC2 camera
on HST . The resulting shear pattern for WFPC2 is shown on Figure 3. (See discussion in ° 8.1 about the di†erence between
this Ðgure and the results of HFKS).

In the second step, we derive the PSF moments from stellar images. For this purpose, the stellar multipole moments andJ
ij
*

are measured using an optimally chosen weight-function width These moments are then corrected for the weightJ
ijkl
* u

*
.

function to provide (an approximation to) the unweighted moments of the PSF (eqs. [54] and [55]). This allows us to use a
di†erent weight-function width u for the galaxies, and thus to improve the sensitivity. The PSF moments are then corrected
for the camera distortion (eqs. [24] and [25] with u] O). This provides the corrected unweighted PSF moments andP

ij
P
ijkl(eqs. [38] and [51]), that can be then be interpolated across the Ðeld using low-order polynomial Ðts for each component.

Figures 8 and 9 show the resulting ellipticities of the WFPC2 PSF derived from two globular clusters, while Figure 10 shows
the interpolated PSF ellipticities derived from a combination of the two after the moments have been corrected for weighting
and camera distortion.

In the third step, we measure the galaxy moments and correct them for instrumental e†ects. The galaxy moments andJ
ijare measured using an optimal weight-function width u. They are then corrected for the camera distortion usingJ

ijkl
/

ij
camera

(eqs. [24] and [25]). The PSF can be decomposed into an anisotropic and an isotropic part (eq. [43]). We correct the galaxy
moments for the PSF anisotropy, by expanding in powers of the PSF ellipticity (eq. [46]). Since, by construction, theJ

ijisotropic part of the PSF is a Gaussian (eq. [44]), we can perform the isotropic correction exactly for (eq. [49]). The fourthJ
ijorder moments are then approximately corrected for the PSF (eq. [50]). This provides us with the corrected galaxyJ

ijklmoments and which are now e†ectively weighted by the new weight-function width (eq. [47]).J
ij
ug J

ijkl
ug , u

gThe Ðnal step consists of measuring the weak lensing shear by averaging over an ensemble of galaxies in a region of the sky.
For this purpose, we compute the ellipticity of each galaxy from its corrected moments (eq. [12]). The weak lensingz

i
J
ij
ug

shear is then computed from the average ellipticity (eq. [30]). In this last step, one should remember to use ratherc
i

Sz
i
T u

gthan u as the weight-function width. The relationship between and is greatly simpliÐed by considering the rotationc
i

Sz
i
T
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FIG. 1.ÈSynopsis of the weak lensing measurement method

properties of the multipole moments (see ° 3.2). Note that our method avoids the complications of the presmear and
postsmear shear susceptibilities discussed in LK and HFKS. In ° 8, we discuss the application of our method to the HST
Survey Strip.

3. SOURCE SHAPE CHARACTERIZATION

In this section, we show how object shapes can be characterized using multipole moments and related quantities. We also
study the rotational properties of the moments and decompose them into spinor representations.

3.1. Moments
Let us consider a source with intensity i(h). As a Ðrst step, we Ðnd the centroid h0 of the source by solving

P
d2h (h

i
[ h

i
0)w(h [ h0)i(h) \ 0 , (2)
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where w(h) is a weight function introduced to ensure convergence in the presence of noise. In this paper, we will consider a
normalized Gaussian weight function,

w(h) 4
1

2nu2 e~h2@2u2 , (3)

which has convenient analytical properties. In practice, equation (2) can be solved iteratively, by Ðxing the weight-function
width u to an initial estimate of the source size (see ° 8.3 for a description of our choice of u for the HST Survey Strip).

To characterize the source shape, we consider the weighted multipole moments of the source intensity,

I4
P

d2h w(h)i(h), I
ij

4
P

d2h h
i
h
j
w(h)i(h), I

ijk
4
P

d2h h
i
h
j
h
k
w(h)i(h), etc . (4)

where the origin of the coordinate system was chosen to coincide with h0. (By deÐnition, the dipole moment vanishes in thisI
icoordinate system). It is usually more convenient to consider the normalized moments

J
ij
4 I

ij
/I, J

ijk
4 I

ijk
/I, etc . (5)

The normalized quadrupole moments can be diagonalized asJ
ij

J \ RT([a)
(
t
:

a2 0
0 b2

)
t
;

R([a) , (6)

where a and b are the (weighted) major and minor radii, a is the position angle measured counterclockwise from the positive
x-axis, and T stands for the transpose operation. The rotation matrix R is deÐned as

R(r)4
(
t
:

cos (r) [sin (r)
sin (r) cos (r)

)
t
;

. (7)

Inverting this relation yields

(a2, b2)\ 12 [J11] J22 ^ J(J11[ J22)2] 4J122 ] , (8)

tan 2a \ 2J12
J11 [ J22

. (9)

3.2. Rotational Properties
To study the rotational properties of the tensors deÐned above, let us consider a new coordinate system that is rotated

counterclockwise by an angle r from the original positive x-axis. In this new coordinate system, the components of theJ
ij
@

normalized quadrupole moments are related to the unrotated components by and similarly forJ
ij

J
ij
@ \ R

ik
([r)R

jl
([r)J

kl
,

tensors of higher order, where R is the rotation matrix deÐned in equation (7). In general, any tensor in 2 dimensions can be
decomposed into 2-component (or 1-component for scalars) l-spinors which rotate as¿

i
,

¿
i
@\ R

ij
([lr)¿

j
, l\ 0, ^1, ^, 2, . . . , (10)

under this change of coordinates. [These spinors form irreducible representations of SO(2), the rotation group in two
dimensions].

For instance, the quadrupole moment which, being symmetric, consists of three independent components, can beJ
ij
,

decomposed into a scalar

d24 12 (J11 ] J22) \ 12 (a2] b2) , (11)

which is the mean square radius of the source, and a spin-2 tensor

z
i
4

MJ11[ J22, 2J12N
J11] J22

\ a2[ b2
a2] b2 Mcos (2a), sin (2a)N , (12)

which is the ellipticity and has been normalized to follow the weak-lensing nomenclature. The component correspondsv1 (v2)
to stretches and compressions parallel to (at 45¡ from) the coordinate axes.

By considering inÐnitesimal rotations, we can also decompose the fourth-order moment which has Ðve independentJ
ijkl

,
components. We Ðnd that it can be decomposed into a scalar,

j 4 (J1111] 2J1122] J2222)/(2 d2u2) , (13)

a spin-2 tensor,

k14 ([J1111 ] J2222)/(2 d2u2) ,

k24 [2(J1112 ] J1222)/(2 d2u2) , (14)
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and a spin-4 tensor,

l14 (J1111[ 6J1122] J2222)/(2 d2u2) ,

l24 4(J1112[ J1222)/(2 d2u2) . (15)

For future convenience, these spinors have been normalized with the weight-function width u (eq. [3]) and the scalar d. These
decompositions are useful for simplifying tensors that are averaged over an ensemble of randomly oriented galaxies (see ° 4.4).

4. DISTORTION

In this section, we study the e†ect of distortions on the source moments. In practice, distortions arise from the instrument
optics and from weak lensing. We show how the former can be corrected and how the latter can be measured by averaging the
ellipticities of an ensemble of galaxies.

4.1. Distortion Matrix
A distortion is an intensity-conserving mapping between the true position x and the observed position x@ of the form

x@ \ x@(x) \ x ] dx(x) . (16)

The observed intensity i@(x) is thus related to the true intensity i(x) by

i@(x@) \ i(x(x@)) . (17)

The local properties of the distortion are quantiÐed by the distortion matrix /, which is deÐned as

/
ij
4
(
t
:

i ] c1 c2] o
c2[ o i [ c1

)
t
;

4
K L(dx

i
)

Lx
j

K
x0

, (18)

where i is the convergence, the shear, and o the rotation parameter. The convergence i describes overall rescalings, and thec
ishear components and describe contractions and dilations parallel to, and at 45¡ from, the coordinate axes. In the case ofc1 c2weak lensing, / is directly related to the second-order derivative of the gravitational potential projected along the line of sight.

While the rotation parameter o is expected to be negligible for weak lensing, it is generally not so for instrumental distortions.
Let us consider a true position x \ x0] *x, which is close to a reference position x0 (e.g., the centroid of a source). For

small distortions (i.e., if the o†set *x is small compared to the scale on which the distortion mapping varies), the correspond-
ing distorted position is given by where and O(/2) denotes higher order deriv-x

i
@\ x

i
0@ ] (d

ij
] /

ij
)*x

j
] O(/2), x

i
0@ 4 x

i
@(x0)

atives of the distortion mapping. Similarly, the true position corresponding to a distorted position x@\ x0@] *x@, is given by
By inserting this expression in equation (17) and by letting and wex

i
\ x

i
0] (d

ij
[ /

ij
)*x

j
@ ] O(/2). x

i
0@\ x

i
04 0 h

i
4 *x

i
@,

obtain

i@(h
i
) \ i(h

i
[ /

ij
h
j
) ] O(/2) . (19)

4.2. E†ect of Distortion on the Source Moments
The quadrupole moment (eq. [4]) for the distorted image i@(h) (eq. [19]) is given byI

ij
@

I
ij
@ \

P
d2h h

i
h
j
w(h)i(h

k
[ /

kl
h
l
) ] O(/2) . (20)

After Taylor expanding and integrating by parts we get, for a Gaussian weight function (eq. [3]), I
ij
@ \ I

ij
] 2I

k*i /j+k ] I
ij

/
kkwhere the unprimed moments correspond to the undistorted moments. Similarly, the distorted[ u~2I

ijkl
/

kl
] O(/2),

monopole moment is related to the undistorted moments by As a result, the distortedI@\ I] I/
kk

[ u~2I
kl

/
kl

] O(/2).
normalized moments (eq. [5]) are given by

J
ij
@ \ J

ij
] D

ijkl
/

kl
] O(/2) , (21)

where the distortion susceptibility tensor is given byD
ijkl

D
ijkl

\ D
ijkl

(J) \ 2d
k*i Jj+l] u~2(J

ij
J
kl

[ J
ijkl

) . (22)

The brackets denote the symmetrizer, which, for an arbitrary tensor of rank n, is deÐned byA
i1 i2 . . . in

A*i1 i2 . . . in+4
1
n !

(A
i1 i2 . . . in ] all n ! permutations of Mi1, i2, . . . , i

n
N) . (23)

Inverting equation (21) yields

J
ij
\ J

ij
@ [ D

ijkl
@ /

kl
] O(/2) , (24)

where This expression can be used to correct the normalized moments for a known distortion.D
ijkl
@ \ D

ijkl
(J@).

4.3. Correction for the Fourth-Order Moments
In principle, the correction for the fourth-order moments can be derived in a similar way. However, when the weightJ

ijklfunction w(h) is taken into account, the resulting expressions contain sixth-order moments and are very cumbersome. As we
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will see in ° 8, it is sufficient, in practice, to consider the unweighted (u] O) corrections to In this approximation, theJ
ijkl

.
corrected fourth-order moments are related to the distorted moments byJ

ijkl
J
ijkl
@

J
ijkl

^ J
ijkl
@ [ 4J

m*ijk@ /
l+m] O(/2) , (25)

where, as before, the brackets denote the symmetrizer (eq. [23]). This expression can be used to correct for instrumentalJ
ijkl
@

distortions.

4.4. Measurement of the Shear
We now show how the gravitational shear can be measured by averaging over galaxy ellipticities. For this purpose, we

consider galaxy moments that have been corrected for all instrumental e†ects, i.e., from instrumental distortion and PSF
convolution, using the prescriptions presented in the other sections of this paper. The e†ect of a weak general distortion /

ij(eq. [18]) on the (corrected) ellipticity of a galaxy can be derived by substituting the distorted moments (eq. [21]) into theJ
ij
@

deÐnition of the ellipticity (eq. [12]). This results in a relation between the distorted ellipticity and the distortionz
i

z
iparameters of the form withd

i
4 Mi, c1, c2, oN z

i
\ A

ij
d
j
] O(/2),

A
ij
4
(
t
:

k1] jv1 2 [ 2v12[ v1 k1[ 12 j [ 12 l1 [2v1 v2[ v1 k2[ 12 l2 2v2
k2] jv2 [2v1 v2[ v2 k1[ 12 l2 2 [ 2v22 [ v2 k2[ 12 j ] 12 l1 [2v1

)
t
;

, (26)

where and are the spinors deÐned in ° 3.2. Note that o is kept here for completeness but is expected to vanish for weakc, l
i
, l

ilensing distortions.
To measure the shear we then average over an ensemble of galaxies that are assumed to be randomly oriented,c

i
,

intrinsically. Thus, all we need is the rotational average of the above relation, which we write as AfterSz
i
T \SA

ij
Td

j
] O(/2).

discarding all terms that are not rotationally invariant, we obtain

SA
ij
T \(

t
:

0 G1 [G2 0
0 G2 G1 0

)
t
;

, (27)

where

G1 4 2 [ Sv2T [ 12 SjT [ 12 Sz Æ lT, G24 12 Sz ] lT , (28)

and and Note that, to this order, the convergence i and thev2 4 v12] v22, z Æ l 4 z1 l1] z2 l2, z ] l 4 z1 l2[ z2 l1.rotation parameter o do not a†ect the mean ellipticitySz
i
T.

Since we do not expect the galaxy population to have a preferred handedness, we can also discard terms that are not parity
invariant. It is easy to check that z ] l is such a term since it changes sign when it is transformed to a left-handed coordinate
system (e.g., x ] x, y ] [y). We are therefore left with a remarkably simple relation between the mean ellipticity and theSz

i
T

shear given byc
i

Sz
i
T \ Gc

i
] O(/2) , (29)

where is the shear susceptibility. This expression agrees with equation (B13) in KSB, as corrected by HFKS. TheG4G1inverse relation,

c
i
\ ESz

i
T ] O(/2) , (30)

where E4 G~1 can be used to measure the shear from the averaged ellipticity.

4.5. Special Cases
Unweighted moments.ÈIn this case, the e†ect of a general distortion (eq. [18]) on the ellipticity is more tractable. We/

ijÐnd that the distorted ellipticity is given byz
i
@

z
i
@\ z

i
] 2(d

ij
[ z

i
z
j
)c

j
] 2e

ij
z
j
o ] O(/2) , (31)

where is the undistorted ellipticity and the symbol is deÐned by Whenz
i

Levi-Cività e
ij

e11 \ e22 \ 0, e12 \[e21 \ 1.
averaged over an ensemble of randomly distributed sources, this reduces to

Sz
i
@T \ (2[ Sv2T)c

i
] O(/2) , (32)

in agreement with equation (29) in the u] O limit.
Circular source, unweighted moments.ÈIf we make the further simplifying assumption that the undistorted source is circular

(v\ 0), the distorted ellipticity (eq. [31]) becomes

z
i
@4 v

i
Õ\ 2c

i
] O(/2) . (33)

It is useful to plot the distortion ellipticity v (rather than as a function of position on the chip, as a measure of the e†ect ofc
i
)

the camera distortion (see Fig. 3).
Radial displacement.ÈLet us consider the case where the displacement Ðeld (eq. [16]) is radial, i.e., where dx \ f (x)(x/x),

where x 4 o x o and f (x) is an arbitrary function. It is easy to show that, in this case, the distortion tensor (eq. [18]) is

/
ij
\
Adf
dx

[ f
x
B x

i
x
j

x2 ] f
x

d
ij

. (34)
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The corresponding distortion ellipticity (eq. [33]) is

vÕ \
Adf
dx

[ f
x
B
vx , (35)

where is the unit radial ellipticity Ðeld. From this expression, it is easy to see that vÕ will bevx4 Mx12[ x22, 2x1 x2N/(x12 ] x22)radial (tangential) if (df/dx [ f/x) is positive (negative).

5. CONVOLUTION

In this section, we study the e†ect of convolution by a weakly anisotropic PSF on the source moments. The PSF can be
decomposed into an isotropic and an anisotropic part. We show how each part can be corrected for and how the PSF
moments can be derived from stellar images.

5.1. E†ect of Convolution on the Source Moments
Let us consider the case where the true galaxy image i(h) is convolved by a kernel p(h). We take p(h) to be normalized so that

/ d2h p(h)4 1 and centered so that / d2h The observed image is given byh
i
p(h)4 0.

i@(h) \
P

d2h@ p(h [ h@)i(h@) , (36)

so that the observed moments are

I
ij
@ \

P
d2h
P

d2h@ h
i
h
j
w(h)p(h [ h@)i(h@) . (37)

There are three angular scales in this equation, namely, u, g, and a, corresponding to the size of the weight function w, the
PSF kernel p, and the (unconvolved) source i, respectively. To simplify this expression, we need to make an expansion with
respect to the ratio between two of these angular scales. We choose to expand with respect to g/u, thereby assuming that the
window function width is much larger than that of the PSF. In practice, the weight function scale is always chosen to be at
least as large as the source size, i.e., To be conservative, we thus take a D u to collect the terms in the expansion. KSBuZ a.
instead, e†ectively expanded in powers of g/(a2] g2)1@2. It is interesting to note that the expression we derive below for isI

ij
@

nevertheless identical to theirs, to second order in g/u.
After a change of variable (h@@4 h [ h@) and a Taylor expansion of w(h@] h@@) about h@, the previous equation becomes

where the brackets stand for the symmetrizerI
ij
@ \ I

ij
] IP

ij
[ (2/u2)I

k*i Pj+k [ [1/(2u2)]I
ij

P
kk

] [1/(2u4)]I
ijkl

P
kl

] O(g4/u2),
(eq. [23]) and I and are the (undistorted) weighted moments (eq. [4]). As before, we take the weight function w(h) to be aI

ijklnormalized Gaussian (eq. [3]). The moments are the (unweighted) moments of the convolution kernel, i.e.,P
ij

P
ij
4
P

d2h h
i
h
j
p(h) . (38)

As stated above, this agrees, to this order, with KSB, as corrected for a factor of by HFKS. In ° 5.6, we will show how the12unweighted PSF moments can be derived from weighted stellar moments. In a similar fashion, it is easy to show that theP
ijconvolved monopole moment is As a result, the convolved normalizedI@ \ I[ [1/(2u2)]IP

kk
] [1/(2u4)]I

kl
P

kl
] O(g4/u4).

moments (eq. [5]) are given by

J
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@ \ J

ij
] C

ijkl
P

kl
] O

Ag4
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B

, (39)

where the convolution susceptibility tensor is given byC
ijkl

C
ijkl

\ C
ijkl

(J)\ d
ik

d
jl
[ 2

u2 J
k*i dj+l]

1
2u4 (J

ijkl
[ J

ij
J
kl
) . (40)

Inverting these equations yields

J
ij
\ J

ij
@ [ C

ijkl
@ P

kl
] O

Ag4
u2
B

, (41)

where The last two equations can be used to correct the observed moments for the PSF, and requireC
ijkl
@ \ C

ijkl
(J@). J

ij
@

knowledge of only the observed quadrupole and fourth-order moments, and of the galaxy, and of the quadrupoleJ
ij

J
ijkl

,
moments of the PSF. We now show how this approximation can be used to correct for a weakly anisotropic PSF.P

ij

5.2. Correction for the PSF
In practice, it is often required to include galaxies with size a (and therefore weight-function width u) only marginally larger

than the PSF size g. The PSF correction given by equation (41) is thus not directly applicable, as the expansion series do not
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converge sufficiently fast. We can nevertheless apply the above correction scheme when the PSF is weakly anisotropic and
sufficiently compact. In this case, we write the unweighted PSF moments as

P
ij
\ g2(t

:

1 ] v1p v2p
v2p 1 [ v1p

)
t
;

, (42)

where g is the PSF radius and is the PSF ellipticity, which is assumed to be small. We can then decompose the kernel p(h)z
i
p

into the convolution of an isotropic part pi(h) with an anisotropic part pa(h), as

p \ pi \ pa . (43)

It is easy to show that this implies that where and are the unweighted moments of pi and pa,P
ij
\ P

ij
i ] P

ij
a , P

ij
i P

ij
a

respectively. Without loss of generality, we further require that

pi(h) 4
1

2ng2 e~h2@(2g2) (44)

be a normalized circular Gaussian with standard deviation g. This implies that

P
ij
i \ g2d

ij
, and P

ij
a \ g2(t

:

v1p v2p
v2p [v1p

)
t
;

. (45)

We now show how to correct each of these components in turn.

5.3. Anisotropic Correction
If we consider a convolution with the anisotropic kernel pa(h) alone, the corrected moments (eq. [41]) become

J
ij
\ J

ij
@ [ C

ijkl
@ P

kl
a ] O

C(gvp)4
u2

D
, (46)

where, as before, is deÐned in equation (40). The residual terms are now suppressed by the factor (vp)4 and areC
ijkl
@ \ C

ijkl
(J@)

thus negligible in practice.

5.4. Isotropic Correction
As explained earlier, the above approximation cannot be applied to correct for the isotropic part of the PSF. However,

since, by construction, the isotropic part pi of the kernel is a Gaussian, we can perform the isotropic correction exactly.
Indeed, by inserting the form of pi (eq. [44]) into equation (37) and by integrating twice, we Ðnd the convolved moments to be

whereI
ij
u@ \ gu2 Iugd

ij
] (gu/g)4I

ij
ug

u
g
24 u2 ] g2, gu~24 g~2]u~2 , (47)

and the superscripts u and in the moments I, and indicate the standard deviation of their respective weight functions.ug I
ij
, I

ij
@

The convolved monopole moment is simply Consequently, the convolved normalized moments areIu@ \ Iug.

J
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u@ \

Agu
g
B4

J
ij
ug ] gu2 d

ij
. (48)

This convenient relation allows us to relate the convolved moments with the unconvolved moments but this timeJ
ij
u@ J

ij
ug ,

weighted with the wider weight standard deviation For later reference, we explicitly write the inverse relationu
g
.

J
ij
ug \

A g
gu

B4
(J

ij
u@[ gu2 d

ij
) , (49)

which can be used to correct for the isotropic part of the PSF.

5.5. Correction for the Fourth-Order Moments
As in the case of distortions (° 4.3), the general expression for the correction of the fourth-order moments forJ

ijklconvolutions contains sixth-order moments and is very cumbersome. Here again, it is usually sufficient to consider the
unweighted (u] O) corrections to With this approximation, the corrected moments are related to the convolvedJ

ijkl
. J

ijklmoments and byJ
ij
@ J

ijkl
@

J
ijkl

^ J
ijkl
@ [ P

ijkl
[ 6P*ijJkl+@ ] 6P*ijPkl+ , (50)

where

P
ijkl

4
P

d2h h
i
h
j
h
k
h
l
p(h) (51)

is the (unweighted) fourth-order PSF moment and the brackets denote the symmetrizer (eq. [23]). This expression can be used
to correct for convolutions. In the next section, we will show how can be estimated from stellar moments.J

ijkl
@ P

ijkl



No. 1, 2000 WEAK LENSING MEASUREMENTS 87

5.6. Measurement of the PSF with Stars
Stars are pointlike and therefore have intensity proÐles given by i*(h) \ Sd(2)(h), where S is the Ñux. The intrinsic moments

(eq. [4]) of a star are thus and We allow for the possibility that the weight function, for theI* \Sw
*
(0) I

ij
* \ J

ij
* \ 0. w

*
(h),

stars is di†erent than that for galaxies, w(h). After convolution (see eq. [41] and above), the moments become I*@\
and where was deÐned in equation (51). As aI* [ 1/(2u

*
2)I*P
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4) I
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4), P

ijklresult, the normalized moments become

J
ij
*@ \ P

ij
] 1

2u
*
2 (P

ij
P
kk

[ P
ijkk

) ] O
A g6
u

*
4
B

. (52)

It is also easy to show that the observed fourth-order moments are given by while their normalizedI
ij
*@

kl
\ I*P

ijkl
] O(g6/u

*
2),

version is
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We can invert these equations to obtain
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and
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* ] O

A g6
u

*
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. (55)

With these expressions, the unweighted PSF moments and can be derived from the observed stellar momentsP
ij

P
ijkl

J
ij
*@

and These can then be corrected for the camera distortion using equations (24) and (25) with u] O and then used inJ
ij
*@

kk
.

equations (46), (49), and (50) to correct the galaxy moments. For this purpose, and need to be interpolated across theP
ij

P
ijklchip. In practice, this can be done by Ðtting a low-order polynomial to each component separately. Figure 10 shows the PSF

ellipticities for the WFPC2 camera derived from globular cluster observations (Figs. 8 and 9), after correction and inter-
polation.

If the star and galaxy weight functions are equal then one needs only to keep the Ðrst term in equation (54).(u\ u
*
),

However, more accurate measurements of the stellar shapes can be achieved by taking a narrower weight function. In
addition, it is desirable to avoid recomputing the stellar moments for each value of u, which is often taken to be a function of
the galaxy size. One would then choose making equation (54) converge more slowly than equation (41). In this case,u

*
\u,

one would thus need to keep the second term in equation (54) and to ensure that the residual error is acceptable[O(o6/u
*
4)]

compared to that for equation (41) [O(o4/u2)].

5.7. Special Cases
Unweighted moments.ÈIn this case, the convolved moments become (eq. [39] with u] O) Thus, theJ

ij
@ \ J

ij
] P

ij
.

observed square radius is

d@2 \ d2 ] g2 , (56)

and the observed ellipticity is where g2 and are deÐned by equation (42). It is sometimes usefulz
i
@ \ (d2z

i
] g2z

i
p)/(d2] g2), z

i
p

to consider the moments which have been deconvolved from the isotropic part of the PSF only. TheJ
ij
deconv4 J

ij
[ g2d

ij
,

associated radius is ddeconv \ d, while the associated ellipticity is z
i
deconv\ z

i
] (g/d)2z

i
p.

Unweighted moments, circular source.ÈIn this case, and thus the observed ellipticity becomesz
i
\ 0,

z
i
@ 4 f

d
z
i
p\ g2

d2] g2 z
i
p , (57)

while the isotropically deconvolved ellipticity becomes

z
i
deconv4 f

d
deconv z

i
p\
Ag
d
B2

z
i
p . (58)

We have introduced the pre- and postdeconvolution reduction factors and These expressions are useful to estimatef
d

f
d
deconv.

the e†ect of the PSF anisotropy on a galaxy.

6. COMBINED EFFECT OF DISTORTION AND CONVOLUTION

In practice, an image is deformed by a series of distortions and convolutions. The full treatment of the combined e†ect of a
distortion and convolution is impractical given the complexity of the and tensors (eqs. [40] and [22] ). However, theD

ijkl
C

ijklgeneral behavior of the ellipticity is captured by considering the simpliÐed case of a circular unweighted source that is subject
to a weak distortion. This provides a good model of ellipticities observed in practice (see ° 8.3 below).
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In the unweighted case [w(h)\ 1] , the normalized quadrupole moments of an image deformed by a convolutionJ
ij
@

followed by a distortion are (see eqs. [41] and [24] with u] O)

J
ij
@ \ (J

ij
] P

ij
)] (J

ik
] P

ik
)/

kj
] (J

jk
] P

jk
)/

ki
] O(/2) , (59)

where are the PSF moments (eq. [38]), is the distortion matrix (eq. [18]), and are the undeformed moments. We willP
ij

/
ij

J
ijassume that the PSF is weakly anisotropic, i.e., that deÐned in equation (42) is small. Then, for an intrinsically circularz
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source the ellipticity of the deformed source is(J
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where the deformation matrix was parametrized as in equation (18), and g is the PSF radius deÐned in equation (42)./
ij

Notice that the convergence i and rotation parameter o do not appear in this Ðrst order expression. The observed square
radius is given byd@24 (J11@ ] J22@ )/2

d@2\ (1] 2i)(d2] g2) ] O((/, vp)2) . (61)

For stars (d \ 0), the observed ellipticity becomesv
i
*

v
i
* \ z
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p ] 2c

i
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We can thus rewrite in terms of observables asz
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Ag
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* ] O((/, vp)2) . (63)

This expression is useful for computing the expected deformation of objects as a function of their observed size. This simpliÐed
model agrees well with the observed deformations in the Survey Strip (see ° 8.3).

7. VALIDITY OF THE METHOD

7.1. Shortcomings
As was recently pointed out (Kaiser 1999 ; Kuijken 1999), the KSB method has several shortcomings2 that limit its validity

and accuracy. First, the method requires a decomposition of the PSF into the convolution of an isotropic part and a compact
anisotropic part. For most PSFs encountered in practice, this decomposition is formally ill deÐned and the anisotropic part is
not necessarily sufficiently compact. Another problem results from the fact that most PSFs do not fall o† fast enough for the
second moments (and higher moments) to converge. Consequently, the weighted second moments of the PSF depend strongly
on the size of the window function. These problems are particularly severe for the PSF of HST , which has broad wings
extending beyond a central core, and thus cast doubts on the validity of the numerous weak-lensing analyses based on HST
observations.

Since our method is based on the same principles as that of the KSB method, it also su†ers from the same shortcomings. In
addition, we have made the further assumption that, in the decomposition of the PSF, the isotropic part can be taken to be a
Gaussian (see ° 5.2). This has the advantage of greatly simplifying the deconvolution but can arguably produce further
inaccuracies.

These problems are certainly worrisome and might eventually be solved by considering di†erent methods such as those
proposed by Kaiser (1999) and Kuijken (1999). However, the KSB approach has the advantage of being relatively simple and
of requiring only a small amount of information about the PSF and galaxy shapes, namely, the Ðrst few multipole moments.
Moreover, these shortcomings are mainly formal in nature. In practice, one indeed always measures moments with a weight
function width that is close to the width of the central core of the PSF, and therefore the moments do not diverge. For
instance, for the HST PSF, the secondary sidelobes that compose the extended wings are smaller in amplitude than the
central core by about one order of magnitude. Since the central core dominates in the convolution, one therefore expects that
the corrections will be approximately correct. In the following paragraphs, we describe numerical simulations designed to test
this assertion quantitatively.

7.2. Simulations
To test the weak link in our method, namely, the PSF correction, we performed a series of numerical simulations. We Ðrst

generated a WFPC2 PSF using the Tiny Tim software (Krist & Hook 1997). We chose the PSF to be particularly noncircular
by placing it at the lower right-hand corner of chip 2, at pixel coordinate (100, 100) (see ° 8 for a description of the WFPC2
camera and of its PSF). We oversampled the PSF by using pixels that are 10 times smaller than the WFPC2 pixels and did not
add any noise to the images. This isolates the systematic deconvolution errors from the random errors produced by
pixelization and noise. To maintain uniformity, we will nevertheless quote angular sizes in WFPC2 pixels.

We then measured the weighted moments of the PSF as described in ° 5.6, using a range of weight function widthsP
ij

u
*
.

For pixels, we found the PSF size and ellipticity components (eq. [42]) to be g ^ 0.86 pixels, andu
*

\ 2 z
i
^ M[0.009,

[0.048N. As expected, we found both g and to diverge as increases. For the rest of the simulations, we set pixels,z
i

u
*

u
*

\ 2
which is the stellar weight width that we used in our analysis of the Survey Strip (see ° 8.3).

2 We thank Nick Kaiser, the referee, for pointing out and clarifying these shortcomings.
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FIG. 2.ÈResidual errors of the PSF correction determined from numerical simulations. (Top panel) The constant term and (middle panel) the radial*z
i
(0)

function f (v) for measuring absolute ellipticities. Bottom panel : Radial function h(v) for measuring an ellipticity change of (see text). These quantitiesdz
i
\ 0.05

are plotted as a function of the unweighted galaxy ellipticity v and size d (in WFPC2 pixels).

We then convolved the PSF with elliptical Gaussian ““ galaxies ÏÏ of various intrinsic sizes d and ellipticities Since thez
i
.

source of the problem lies with the PSF shape, this simpliÐed galaxy model is sufficient for our purposes. We measured the
moments of the convolved Gaussian using a weight function width of u\ max (2, d) pixels, just as we did for the analysis of
the Survey Strip (° 8.3). We then applied our PSF correction method (° 5) to obtain the corrected ellipticity weightedv

i
corrected,

with an e†ective width (eq. [47]). For an elliptical Gaussian source, it is easy to show that the true weighted ellipticity isu
g The error induced by the PSF correction on the galaxy ellipticity is thusz

i
true \ z

i
[1] (d/u

g
)2(1 [ v2)]~1. *z

i
*z

i
4 z

i
corrected [ z

i
true . (64)

We computed this residual error for a range of intrinsic galaxy sizes and ellipticities. The results of these simulations are
presented in the next section.

7.3. Results
For the range of galaxy shapes that we considered (1.0 \ d \ 4.0 pixels and we found that, for a given galaxy size d,z

i
\ 1),

the ellipticity error is very well approximated by*z
i

*z
i
^ *z

i
(0)] f (v)zü

i
, (65)



90 RHODES, REFREGIER, & GROTH Vol. 536

where is a constant, is the unit radial ellipticity vector, and f (v) is a function describing the radial behavior. The*z
i
(0) zü

i
4 z

i
/v

constant term is shown in the top panel of Figure 2 for several relevant galaxy sizes and has a modulus less than .004 for*z
i
(0)

d [ 1.5 pixels. The middle panel of Figure 2 shows the radial term f (v) as a function of the unweighted galaxy ellipticity
modulus v, for the same galaxy sizes. The radial term depends strongly on the galaxy size d and ellipticity v and has an
amplitude of several percent for moderate ellipticities (v\ 0.6) and sizes (d [ 1.5 pixels). This amplitude is the size of the
systematic error made in measuring the ellipticity of a single galaxy.

However, for weak lensing measurements, one is not eventually interested in the ellipticity of a single galaxy, but also in
measuring a global change in ellipticity averaged over a galaxy ensemble. Let us consider a change in ellipticity z

i
] z

i
@\

produced by lensing3. The error in the measurement of isz
i
] d

i
dz

i

*dz
i
4 S*z
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@)T ^ S*z
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TL*z
i

Lz
i

U
dz
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, (66)

where the angle brackets refer to the average over the galaxy ensemble. For the functional form of equation (65), this becomes

*dz
i
^ *z

i
(0)] h(v)dz

i
, (67)

where The Ðrst term was plotted in the top panel of Figure 2. The second term is shown as a functionh(v)4 12[ f @(v) ] f (v)/v].
of v and d in the bottom panel of Figure 2, for an ellipticity change of Since, for our sample G^ 1.4 (eq. [29]), thisdz

i
\ 0.05.

value of corresponds to a shear of and is therefore representative of shear signals expected from large-scaledz
i

c
i
^ 0.04

structure. For moderate ellipticities (v\ 0.6) and sizes (d [ 1.5 pixels), the second term has an amplitude less than 0.004.
Interestingly, both terms in equation (67) tend to average out, when the distribution of galaxy sizes is considered. Indeed, in

our treatment of the Survey Strip (see ° 8.4), we selected a sample of ““ large ÏÏ galaxies with d [ 1.5 pixels (and v\ 1, which is
not always satisÐed because of noise). The average size for this sample is SdT ^ 2.58 pixels, which is close to the value of d for
which both terms change sign (see Fig. 2). The ellipticity dispersion for this sample is Taking SdT and to bepv^ 0.31. pvrepresentative for this sample, we Ðnd the average residual errors to be This cancellation may, however, depend*dz

i
B 0.001.

on the galaxy proÐle, while we have considered only Gaussians in these simulations. To be conservative, we therefore take the
residual error for our sample to be about 0.004, which is the error before averaging over d values. This is close to the residual
error estimated from the anisotropic correction of the stars in our analysis of globular cluster Ðelds (° 8.4).

We also studied how the choice of the weight function widths u and a†ect these results. We found that for moderateu
*values and 0.5d \ u \ 2d), the magnitude of the residual errors did not change signiÐcantly from the above.(1\ u

*
\ 3

However, the errors were much larger for u and outside of these ranges. This is, of course, a consequence of theu
*divergences present in the PSF moments.

We conclude that, the ellipticity error produced by the PSF correction can be several percent for an individual galaxy
observed with WFPC2. However, it is only about 0.004 when averaged over a galaxy ensemble with d [ 1.5 pixels, provided
moderate values of the weight function widths are used. This does not alleviate the serious formal shortcomings of the
method, and the need for a search for more robust methods (see Kaiser 1999 ; Kuijken 1999).

8. APPLICATION TO HST IMAGES

As an application of our method, we consider weak-lensing measurements with the WFPC2 camera on board HST . The
camera consists of three 800 ] 800 pixel chips, with a pixel size of With the F814W Ðlter, the PSF has a FWHM of about0A.1.

The instrumental e†ects for WFPC2 have been studied in detail by HFKS. They showed that the two main systematic0A.09.
e†ects for this instrument are the camera distortion and the PSF. We repeat their analysis by considering each of these e†ects
in turn. We then apply these results to the galaxies found in the Survey Strip.

8.1. Camera Distortion
The camera distortion is caused mainly by the Ðeld Ñattener, a refractive element in the WFPC2. This e†ect has been

studied by Holtzman et al. (1995), who quantiÐed this e†ect using astrometric measurements of globular cluster observations.
They modeled the distortion by a cubic polynomial in chip position for each chip. The polynomial coefficients can be used to
derive a transformation matrix between the WFPC2 chip coordinates (which are the distorted coordinates x@ in eq./

ij
camera

[16]) and the undistorted coordinates (x in the same equation).
The distortion Ðeld is shown in Figure 3. The quantity plotted is the ellipticity induced by the distortion Ðeldv

i
Õ 4 2c

i
, /

ijon an intrinsically circular source (see eq. [33]). The pattern is radial and increases in magnitude with distance from the chip
center. This di†ers from the results of HFKS who derived a tangential rather than radial camera distortion Ðeld. The radial
nature of the pattern is conÐrmed by the fact that, using the coefficients of Holtzman et al. (1995) in equation (35), we Ðnd
(df/dx [ f/x)[ 0. (This can also be conÐrmed by drawing a box connecting the heads and tails of four adjacent arrows in
Fig. 15 in Holtzman et al.) To study the proÐle of the ellipticity pattern, it is useful to deÐne the rotated ellipticity by

z
i
r 4 R

ij
([2r)z

j
, (68)

where is the ellipticity of an object in the chip frame, is the rotation matrix deÐned in equation (7), and r is the polarz
i

R
ij

3 Strictly speaking, the ellipticity change produced by weak lensing has a weak dependence on (see eq. [31]). While this e†ect is important only ford
i

z
ilarge ellipticities, the ensemble average is dominated by small ellipticities. For the purpose of estimating the size of the average correction error, we can thus

ignore this small e†ect and consider a constant ellipticity shift.
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FIG. 3.ÈWFPC2 detector shear pattern. The quantity plotted is which is the ellipticity induced by the detector shear for an intrinsically circularz
i
Õ\ 2c

i
,

source. Chips 2, 3, and 4 are in the upper left, lower left, and lower right corners, respectively. Chip 1 (the planetary camera) is not shown. Each chip is on a1@.3
side.

angle of the source position about the center of the chip, measured counterclockwise from the x-axis. A positive (negative)
value of corresponds to a radial (tangential) ellipticity pattern. A positive (negative) value of corresponds to anv1r v2ranticlockwise (clockwise) swirl pattern. The meaning of is illustrated in Figure 4.z

i
r

The proÐle of the rotated distortion ellipticity is shown as the dot-dashed line on Figure 5. The mean ellipticity averaged
over the three chips is listed in Table 1. The mean rotated ellipticities are found to be and whileSv1r T ^ 0.007 Sv2r T \ 0.001,
the mean absolute ellipticity is less than 0.001. The e†ect of the camera distortion is thus small but neverthelessSz

i
T

comparable to the lensing signal expected from large-scale structure.

8.2. Point-Spread Function
The PSF is a†ected by di†raction by the telescope and scattering of light from di†erent parts of the telescope and the optics.

The PSF depends both on wavelength and time. The time dependence has two components (Krist & Hook 1997). The Ðrst
one is due to orbit-to-orbit ““ breathing ÏÏ of the telescope. As the telescope orbits the earth every 90 minutes, it passes into and
out of sunlight. The heating and cooling of the telescope changes its size, and thus its focus and PSF. The second time-
dependent factor arises from a change in the focus of the telescope over longer periods of time. This change is produced by the
outgassing of the graphite epoxy truss that supports the primary mirror. Approximately every 6 months, the secondary mirror
is moved to bring the telescope back into optimal focus. The time dependence of the focus position is summarized in Figure 6.

8.2.1. T iny T im

As a Ðrst step, we used the Tiny Tim software to model the PSF of the HST (Krist & Hook 1997). Tiny Tim takes into
account the di†raction of light by the telescope to create a PSF, given the instrument (WFPC2 in our case), chip number, chip
position, Ðlter, spectrum of the object being modeled, and the focus of the telescope. Tiny Tim does not include the geometric
distortion discussed above.

We used Tiny Tim to model the PSF across the three WFPC2 chips. We chose the F814W Ðlter and the spectrum of the
objects to be similar to that of a type G star (B[V \ 0.619), which is typical of galaxies in the Survey Strip (see ° 8.3). We
measured the moments (eq. [5]) and weighted them with a circular Gaussian (eq. [3]). For all stellar measurements, we
adopted a weight-function width of pixels, which resulted in an optimal sensitivity.u

*
\ 2

To study the variation of the PSF across the chip, we used Tiny Tim to create a grid of PSFs. These PSFs were generated
for a telescope with a mirror at a focus position of [1.5 km, the value of the focus when the Survey Strip was taken (see ° 8.3).
The resulting ellipticity pattern is shown in Figure 7. The corresponding ellipticity proÐle averaged over all chips is shown as
the central dashed line in Figure 5. In these Ðgures, we have added the e†ects of the detector shear shown in Figure 3 so that a
direct comparison can be made between these simulations and the globular cluster measurements, which are presented below.
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FIG. 4.ÈIllustration of the meaning of rotated ellipticity This ellipticity is deÐned by choosing coordinates axes that are rotated about the chip center.z
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TABLE 1

EFFECT OF CORRECTIONS ON CHIP-AVERAGED ELLIPTICITIES

Sample Correctionsa Sv1r T Sv2r T Sv1T Sv2T pvb

Camera distortion . . . . . . 0.007 ^ 0.001 [0.000 ^ 0.001 0.000 ^ 0.001 [0.000 ^ 0.001
M4 ] NGC 6572 . . . . . . [0.047 ^ 0.001 0.001 ^ 0.001 [0.014 ^ 0.001 [0.020 ^ 0.002

d, a [0.003 ^ 0.001 0.000 ^ 0.001 [0.002 ^ 0.001 0.002 ^ 0.001
M4 . . . . . . . . . . . . . . . . . . . . . . . [0.040 ^ 0.002 [0.001 ^ 0.001 [0.010 ^ 0.001 [0.020 ^ 0.002

d, a 0.004 ^ 0.001 0.000 ^ 0.001 0.003 ^ 0.001 0.003 ^ 0.001
NGC 6572 . . . . . . . . . . . . . . . [0.053 ^ 0.002 0.003 ^ 0.002 [0.019 ^ 0.002 [0.020 ^ 0.003

d, a [0.009 ^ 0.001 [0.000 ^ 0.001 [0.007 ^ 0.001 0.001 ^ 0.001
Tiny Timc ([1.5k) . . . . . . [0.035 ^ 0.003 [0.000 ^ 0.003 [0.032 ^ 0.002 [0.031 ^ 0.003

(]2.0k) . . . . . . . . . . . . . . . [0.033 ^ 0.003 [0.001 ^ 0.002 [0.025 ^ 0.001 [0.023 ^ 0.003
([5.0k) . . . . . . . . . . . . . . . [0.038 ^ 0.004 [0.000 ^ 0.003 [0.038 ^ 0.002 [0.037 ^ 0.004

Small galaxiesd . . . . . . . . . . [0.009 ^ 0.004 [0.002 ^ 0.004 0.005 ^ 0.004 [0.005 ^ 0.004 0.24
d [0.013 ^ 0.004 [0.001 ^ 0.004 0.004 ^ 0.004 [0.004 ^ 0.004 0.24
d, a 0.004 ^ 0.004 0.000 ^ 0.004 0.011 ^ 0.004 0.005 ^ 0.004 0.24

Large galaxiesd . . . . . . . . . . 0.004 ^ 0.003 [0.000 ^ 0.003 0.006 ^ 0.003 [0.005 ^ 0.003 0.24
d 0.001 ^ 0.003 [0.000 ^ 0.003 0.007 ^ 0.003 [0.006 ^ 0.003 0.24
d, a 0.005 ^ 0.003 0.000 ^ 0.003 0.009 ^ 0.003 [0.003 ^ 0.003 0.24
d, a, i 0.008 ^ 0.004 [0.000 ^ 0.004 0.009 ^ 0.004 [0.001 ^ 0.004 0.31

a Corrections : d \ camera distortion, a \ PSF anisotropy, and i \ isotropic PSF. The PSF is derived from the combined M4 and
NGC 6572 stars.

b pv24 12Sv2T \ 12(Sv12T] Sv22T).
c PSF predicted by Tiny Tim for several focus values.
d Galaxies with magnitudes I\ 26, ellipticities v\ 1, and observed radii 1.0\ d@\ 1.5 and d@[ 1.5 pixels, for the small and large

samples, respectively.
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FIG. 5.ÈRotated ellipticity proÐle for the PSF and the camera distortion, as a function of radius about the chip center. The solid lines show the ellipticity
as measured for M4, combined M4/NGC 6572 , and NGC 6572 stars, from top to bottom, respectively. The dashed lines show the PSF ellipticity predicted
by Tiny Tim for focus values of ]2.0, [1.5, and [5.0 km, from top to bottom, respectively. The dot-dashed line shows the distortion ellipticity z

i
Õ.

FIG. 6.ÈHST focus as a function of time. The vertical lines give the times of mirror movements generated to bring the telescope back into focus. The
diagonal lines represent the average mirror position as a function of time. Orbit-to-orbit ““ breathing ÏÏ produces considerable variations (up to several
microns) about these mean values. The rms value of these variations is shown by the dotted lines. This Ðgure is patterned after Fig. 5.7 in Biretta (1996). The
values corresponding to the observations of the Survey Strip and of the M4 and NGC 6572 globular clusters are also indicated.
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FIG. 7.ÈPSF ellipticity predicted by Tiny Tim. This Ðgure corresponds to a focus of [1.5 km, close to the mean value for the Survey Strip observations.
The ellipticities are shown after application of the camera distortion.

The predicted PSF anisotropy is quite large at the edge) and varies signiÐcantly across each chip and from chip to(Sv1r T ^ 0.1
chip.

To test the e†ect of focus changes, we created Tiny Tim PSFs at focus values of ]2.0 km and [5.0 km, the full range of
telescope focus (see Fig. 6). The ellipticity proÐles are shown are the upper and lower dashed curves in Figure 5. The
chip-averaged ellipticities for each focus value are listed in Table 1. Extreme focus changes from the central value of [1.5 km
produce variations of about 0.002 for and about 0.006 for and when averaged over all chips.Sv1r T Sv1T Sv2T,

8.2.2. Globular Clusters

For a more direct measurement of the PSF, we obtained archival images of the globular cluster M4 observed by Richer et
al. (1997). We also obtained archival images of the globular cluster NGC 6572. This was the method of calibration used by
HFKS. It is fortuitous that the M4, NGC 6572, and Survey Strip data all have focus values of approximately [1.5 km (see
Fig. 6).

The M4 data consisted of three di†erent Ðelds in each cluster. Each Ðeld had eight di†erent exposures : four pairs of dithered
pointings separated by very nearly 2 pixels. Other dithers were separated by noninteger numbers of pixels. We shifted the
dithers that are separated by integer numbers of pixels and compared them pairwise to detect cosmic rays. A pixel was Ñagged
as a cosmic ray if its Ñux was signiÐcantly above that of the corresponding pixel in its pair image. We selected stars from the
M4 exposures by excluding saturated stars and those that are faint and dominated by noise. We also excluded stars confused
by close neighbors and stars containing a cosmic-rayÈÑagged pixel within a 5 pixel radius. Our resulting sample consisted of
about 160 stars per chip. We then averaged the three moments measured in each of the eight exposures. The analysis of theP

klNGC 6572 data was simpliÐed by the fact that we had only one Ðeld and the images were not dithered.
The ellipticity Ðelds for M4 and NGC 6572 are shown in Figures 8 and 9, respectively. The ellipticity proÐle for each

globular cluster is shown as the upper and lower solid line in Figure 5, respectively. The chip-averaged ellipticities for each
globular cluster data set are listed in Table 1. The M4 and NGC 6572 ellipticity patterns are qualitatively similar, and both
show tangential ellipticities of the order of 0.1 at the edge of all chips. The M4 and NGC 6572 average ellipticities areSv1r T[0.040 and [0.053, respectively, and are both larger than that predicted by Tiny Tim (about [0.035). The fact that the mean
tangential ellipticity for NGC 6572 is larger than that for M4 by about 0.013, shows that the PSF varies substantially over
periods as short as a few days. This change is larger than that predicted by Tiny Tim for extreme focus changes (see ° 8.2.1).
Moreover, the globular cluster ellipticities are qualitatively di†erent from that predicted by Tiny Tim. For example, Figure 10
shows a ““ teardrop ÏÏ shape to the M4 ellipticity pattern of chip 2, with a cusp at the top of the chip. In contrast, the Tiny Tim
ellipticity pattern of the same chip, shown in Figure 7, has a cusp on the right-hand side. Small changes in this cusp result from
changing the focus of the telescope in Tiny Tim, but these do not change the qualitative pattern of the ellipticities.

Because of these shortcomings, we used the observed globular cluster moments for the corrections, rather than the Tiny
Tim predictions. To reduce patchiness, we combined the M4 and NGC 6572 stars, and corrected the moments for the weight
function (eqs. [54] and [55]) and for the camera distortion (eqs. [24] and [25] with u] O) to obtain the PSF moments P

ij
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FIG. 8.ÈEllipticities of the stars in the globular cluster M4. A Gaussian weight function of width pixels was used to measure the stellar moments.u
*

\ 2

and We then Ðtted a Ðfth-order polynomial in chip position for each moment component and for each chip. Because theP
ijkl

.
star counts in the two globular cluster are close to one another (i.e., about 160 per chip), this amounts to giving equal weight
to each of them. The ellipticity proÐle for the combined globular clusters is shown as the central solid line in Figure 5. Figure
10 shows the resulting Ðtted ellipticity pattern of the PSF.

FIG. 9.ÈEllipticities of the stars in the globular cluster NGC 6572
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FIG. 10.ÈPSF ellipticities derived from the combined M4/NGC 6572 stars after being corrected for shear and weighting and interpolated

The mean PSF radius for the combined M4/NGC 6572 was found to be g ^ 0.89 pixels (see eq. [42]). This is much smaller
than the formal PSF radius that one would measure using a Tiny Tim PSF with As explained in ° 7.1, theu

*
] O.

quadrupole moments indeed formally diverge because of the extended wings of the HST PSF. Our value is however
commensurate with the PSF FWHM (0.9 pixels), and should thus be considered as an e†ective PSF radius.

8.3. Survey Strip
The Survey Strip is a set of 28 contiguous pointings with the HST in two colors, V (F606W) and I (F814W) (Groth et al.

1994 ; Rhodes 1999). The images were taken in 1994 March and April with the WFPC2. The Strip has about 10,000 galaxies
down to IB 26 and covers an area of about 108 arcmin2 over a region. The Strip has already proved a useful data3@.5 ] 44@.0
set in exploring the distribution of luminous matter through number counts and the two-point angular correlation function
(Rhodes et al. 1997 ; Rhodes 1999). We are in the process of exploring the large-scale distribution of matter through weak
lensing of the Strip galaxies (Rhodes 1999 ; Rhodes, Refregier, & Groth 2000, in preparation).

Here, we use the Strip galaxies to test our shear measurement method. For this purpose, we used the I images only. The
catalog of galaxies was created using the Faint Object ClassiÐcation and Analysis System (FOCAS) within IRAF (Jarvis &
Tyson 1981). An object was considered as detected if two contiguous pixels were more than 3 p above the sky background.
However, an object was included in the Ðnal catalog only if both the I and V images had detections within an error box of
approximately 5 pixels This resulted in a sample of 9448 galaxies with I\ 26.(0A.5).

The moments of the galaxies were calculated as described above (eq. [5]). The variable weight function was chosen to be
u\ max [2, (A/n)1@2], where A is the detection area calculated by FOCAS. The lower bound of u was chosen to match the
width used for stars. The importance of the camera distortion and of the PSF depends on the radius d of the galaxy (eq.u

*[11]). We thus considered subsamples of small and large galaxies, with 1.0\ d@\ 1.5 pixels and d@[ 1.2 pixels, respectively.
Here d@ is the rms observed radius (eq. [56]) and g ^ 0.89 pixels is the PSF radius (see ° 8.2.2). Because of the noise, a fraction
of the galaxies have unphysical ellipticity values (v[ 1). Because these outliers would dominate ellipticity statistics, we
retained only galaxies with v\ 1. The mean observed radius and reduction factor (eq. [57]) are Sd@T^ 1.26 pixels and

and Sd@T ^ 2.16 pixels and for the small and large galaxies, respectively. Each subsample respectivelyf
d
^ 0.50, f

d
^ 0.17,

comprises 41% and 77% of the total number of I\ 26 galaxies.
The ellipticity proÐle for each subsample is shown as a solid line in Figures 11 and 12. Also shown are the asymptotic cases,

namely, the combined M4/NGC 6572 stars (d \ 0) and the camera distortion ellipticity (d ] O). The dashed line shows the
prediction of the simpliÐed model described in ° 6 (see eq. [63]). The small galaxy sample shows a tangential ellipticity that
increases with radius from the chip center, in agreement with the model prediction. The large galaxies, on the other hand, do
not display any signiÐcant tangential ellipticity, again in agreement with the model. In both cases, is consistent with zero.Sv2r TUsing the camera distortion matrix derived in ° 8.1 and the PSF moments derived in ° 8.2, we then corrected the Strip
galaxies. The ellipticity proÐles at di†erent stages of the correction for the small and large galaxy subsamples are shown in
Figures 13 and 14. Since the camera distortion is radial, its correction increases the tangential ellipticity of the galaxies. On the
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FIG. 11.ÈRotated ellipticity proÐle for small galaxies in the Survey Strip. Galaxies were selected to have I\ 26 and radii 1.0 \ d@\ 1.5 pixels. The PSF
and the camera distortion ellipticity are also shown for comparison. The proÐle for the Strip galaxies expected in the simpliÐed theoretical model is alsoz

i
Õ,r

shown (see text).

other hand, the correction for the PSF, which is mainly tangential, reduces the tangential component of the ellipticity. For
both subsamples, the resulting corrected proÐle is consistent with 0. As expected, the PSF correction has a smaller e†ect on
the large galaxies than on the small galaxies.

8.4. Error Budget
The e†ect of the corrections for the chip-averaged ellipticities are summarized in Table 1. To ensure statistical indepen-

dence, we considered in this table a subsample of large galaxies with d@[ 1.5 pixels (and v\ 1). This subsample contains 51%
of the total number of galaxies with I\ 26, corresponding to a surface density of n ^ 32 arcmin~2. Their mean observed
radius is Sd@T ^ 2.58 pixels, corresponding to a postdeconvolution reduction factor of (eq. [58]). As a test of thef

d
deconv^ 0.13

correction algorithm, we also corrected the globular cluster stars, exactly as we corrected the galaxies. (We have not corrected
either the stars or the small galaxies for the isotropic PSF, as this would produce diverging ellipticities.) The results for the
corrected stars are also shown in the table.

The self-corrected M4/NGC 6572 stars have residual ellipticities of and This is aSv1r T ^ 0.003 Sv1T ^ Sv2T ^ 0.002.
measure of the errors resulting from the approximations in our correction method and from the Ðt to the stellar moments.
Another estimation of the errors from the method was presented in ° 7. By performing numerical simulations, we showed that
the residual ellipticity errors in the PSF correction was 0.004, after averaging over a galaxy ensemble with d [ 1.5 pixels.
Given the agreement of these two estimates, we take the error in the correction method to be about 0.004.

As we noted in ° 8.2, the M4 and NGC 6572 ellipticities di†er by about 0.01 for both rotated and absolute ellipticities. After
the anisotropic PSF correction, the small galaxies have a residual ellipticity of andSv1r T ^ 0.004, Sv2T ^ 0.011 Sv1T ^ 0.005.
Since the small galaxies have a reduction factor of their residual ellipticity indicates that the PSF variation isf

d
^ 0.50, Sv1Tabout 0.02, which is larger than that given by the comparison of M4/NGC 6572. We therefore take the variations of the

chip-averaged PSF ellipticity to be about 0.02.
How does this uncertainty a†ect the ellipticities of the large galaxies? As noted above, the postdeconvolution reduction

factor for the large galaxies (with d@[ 1.5 pixels) is Consequently, our uncertainty of 0.02 in the PSF ellipticityf
d
deconv ^ 0.13.

produces an uncertainty in the ellipticities of the large galaxies of only 0.003. This is of course a commendable consequence of
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FIG. 12.ÈSame as the previous Ðgure, but for large galaxies (d@[ 1.2 pixels)

the small size of the WFPC2 PSF. Note also that, for the large galaxies, the camera distortion correction is about the same
size as that for the PSF, so that the two corrections almost cancel each other. The changes in ellipticities produced by each of
these corrections is less than 0.005 for the large galaxies. The total systematic uncertainty is a combination of the correction
uncertainty and of the PSF variability and is thus about 0.004.

The statistical uncertainties are determined by the ellipticity variance Both noise in thepv24 12Sv2T \ 12(Sv12T] Sv22T).
image and the intrinsic shapes of the galaxies contribute to this dispersion. The rms ellipticity is listed in the last column ofpvTable 1, at various stages of the correction. For both the large and small galaxies, does not increase when we correct for thepvcamera distortion and for the anisotropic PSF. This shows that our correction method does not introduce any appreciable
noise in the ellipticity measurements. Not surprisingly, increases moderately when we correct for the isotropic PSF. This ispvexpected since this deconvolution reduces the galaxy size and thus reduces the denominator in the deÐnition of the ellipticity.
For the large galaxies, the rms ellipticity after all corrections is about Since the mean number of such galaxies perpv ^ 0.31.
chip is about the 1 p sensitivity to detect the shear in a chip is This is close to the expected rmsN

g
^ 57, pv/(Ng

)1@2 ^ 0.04.
shear expected from weak lensing by large-scale structure in cells for cluster normalized cold dark matter (CDM) models1@.3
and for a source redshift z\ 1 (Jain & Seljak 1997). This shows that the expected signal-to-noise ratio of a single WFPC2 chip
is about 1.

9. CONCLUSIONS

We have revisited the KSB method to measure the weak lensing shear from the shapes of galaxies. In our method, the
corrections for the camera distortion and PSF convolution are performed using moments rather than ellipticities. Using a
Gaussian weight function, we derived explicit expressions for the corrections, which involve only second- and fourth-order
moments. We clariÐed the convergence of some of the approximations made by KSB and showed how the weight function for
stars can be chosen to be di†erent from that for galaxies. We also showed how the isotropic part of the PSF can be assumed to
be a Gaussian, to the required level of precision, and can thus be corrected for exactly. We derived the explicit relation
between the shear and the ellipticities by decomposing moments into tensors with deÐnite rotational properties.

We addressed the recently exposed shortcomings of the KSB method (Kaiser 1999 ; Kuijken 1999). Our method, as well as
the KSB method, has formal problems arising from the fact that PSFs encountered in practice are not sufficiently compact.
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FIG. 13.ÈE†ect of the corrections for small galaxies (1.0\ d@\ 1.5 pixels, I\ 26) in the Survey Strip. The proÐle for the galaxies is shown at di†erent
stages of the correction algorithm. The error bars are similar for each of the three proÐles, but, for clarity, were displayed only for the last case.

We used numerical simulations to assess the importance of these problems in the analysis of WFPC2 images. We found that
the ellipticity error produced by the PSF correction can be several percent for an individual galaxy. However, it is only about
0.004 when averaged over a galaxy ensemble with d [ 1.5 pixels, provided moderate weight function widths are used.

We studied systematic e†ects arising in WFPC2 images. From globular cluster observations, we conÐrm the results of
HFKS, who found D10% PSF ellipticities at the edge of each chip. We Ðnd however that the camera distortion is radial
rather than tangential. It produces ellipticities of the order of 0.7%. We further Ðnd that the PSF ellipticity varies by as much
as 2% over time.

We applied our correction method to the HST Survey Strip. We showed that the di†erent stages of our correction do not
introduce any appreciable noise. We studied the dependence of galaxy ellipticities on the galaxy size. Small galaxies are more
sensitive to the PSF and also indicate that the PSF varies with time. For large galaxies (observed radii d@[ 1.5 pixels), the
total systematic uncertainty is about 0.4% and results from a nearly equal contribution from the correction uncertainty and
from the PSF variability. The statistical 1 p uncertainty in measuring the shear in a single WFPC2 chip is about 4%1@.3 ] 1@.3
for this subsample of galaxies. This provides good prospects for detecting a cosmic shear signal with the Strip and other deep
HST surveys. In Rhodes, Refregier, & Groth (2000, in preparation) and Rhodes (1999), we will describe our search for such a
signal.

We thank Richard Ellis, Peter Schneider, Stella Seitz, Henk Hoekstra, Christophe Alard, David Bacon, and Meghan Gray
for useful discussions. We are grateful to Nick Kaiser, the referee, for insightful comments and criticisms. A. R. was supported
by the NASA MAP/MIDEX program and by the NASA ATP grant NAG5-7154. E. G. and J. R. were supported by NASA
grant NAG5-6279 and would like to thank the WFPC1 IDT for cooperation on this project.
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FIG. 14.ÈSame as the previous Ðgure, but for large galaxies (d@[ 1.2 pixels)
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